${ }^{8} \mathrm{CHO}^{2}$

	Yr 1 Yr 2	Yr 3 Y\| 4 Yr	Yr 5 Y\| 4 Y 6
	Asksing questions and recognising they can be answered in different ways -While exploring the world, the children develop their ability to ask questions (such as what something is, how things are similar and different, the ways things work, which alternative is better, how things change and how they happen). Where appropriate, they answer these questions. The children answer questions developed with the teacher often through a scenario. The children are involved in planning how to use resources provided to answer the questions using different types of enquiry, helping them to recognise that there are different ways in which questions can be answered.	Asking relevant questions and using different types of scientific enquiries to answer them - The children consider their prior knowledge when asking questions. They independently use a range of question stems. Where appropriate, they answer these questions. - The children answer questions posed by the teacher. - Given a range of resources, the children decide for themselves how to gather evidence to answer the question. They recognise when secondary sources can be used to answer questions that cannot be answered through practical work. They identify the type of enquiry that they have chosen to answer their question.	Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary - Children independently ask scientific questions. This may be stimulated by a scientific experience or involve asking further questions based on their developed understanding following an enquiry. - Given a wide range of resources the children decide for themselves how to gather evidence to answer a scientific question. They choose a type of enquiry to carry out and justify their choice. They recognise how secondary sources can be used to answer questions that cannot be answered through practical work.
	Observing closely, using simple equipment - Children explore the world around them. They make careful observations to support identification, comparison and noticing change. They use appropriate senses, aided by equipment such as magnifying glasses or digital microscopes, to make their observations. They begin to take measurements, initially by comparisons, then using non-standard units.	Making systematic and careful observations and, where appropriate, taking accurate measurements using standard units, using a range of equipment, including thermometers and data loggers The children make systematic and careful observations. - They use a range of equipment for measuring length, time, temperature and capacity. They use standard units for their measurements.	Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate The children select measuring equipment to give the most precise results e.g. ruler, tape measure or trundle wheel, force meter with a suitable scale. - During an enquiry, they make decisions e.g. whether they need to: take repeat readings (fair testing); increase the sample size (pattern seeking); adjust the observation period and frequency (observing over time); or check further secondary sources (researching); in order to get accurate data (closer to the true value).
	Performing simple tasks The children use practical resources provided to gather evidence to answer questions generated by themselves or the teacher. They carry out: tests to classify; comparative tests; pattern seeking enquiries; and make observations over time. Identify and classify Children use their observations and testing to compare objects, materials and living things. They sort and group these things, identifying their own criteria for sorting. They use simple secondary sources (such as identification sheets) to name living things. They describe the characteristics they used to identify a living thing.	Setting up simple practical enquires, comparative and fair tests - The children select from a range of practical resources to gather evidence to answer questions generated by themselves or the teacher. - They follow their plan to carry out: observations and tests to classify; comparative and simple fair tests; observations over time; and pattern seeking.	Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary The children select from a range of practical resources to gather evidence to answer their questions. They carry out fair tests, recognising and controlling variables. They decide what observations or measurements to make over time and for how long. They look for patterns and relationships using a suitable sample.
	Gathering and recording data to help in answering questions The children record their observations e.g. using photographs, videos, drawings, labelled diagrams or in writing. - They record their measurements e.g. using prepared tables, pictograms, tally charts and block graphs. - They classify using simple prepared tables and sorting rings.	Gathering, recording and classifying presenting data in a variety of ways to help in answering questions Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables - The children sometimes decide how to record and present evidence. They record their observation e.g. using photographs, videos, pictures, labelled diagrams or writing. They record their measurements e.g. using tables, tally charts and bar charts (given templates, if required, to which they can add headings). They record classifications e.g. using tables, Venn diagrams, Carroll diagrams. Children are supported to present the same data in different ways in order to help with answering the question.	Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs The children decide how to record and present evidence. They record observations e.g. using annotated photographs, videos, labelled diagrams, observational drawings, labelled scientific diagrams or writing. They record measurements e.g. using tables, tally charts, bar charts, line graphs and scatter graphs. They record classifications e.g. using tables, Venn diagrams, Carroll diagrams and classification keys. - Children present the same data in different ways in order to help with answering the question.

Using their observations and ideas to suggest answers to question - Children use their experiences of the world around them to suggest appropriate answers to questions. They are supported to relate these to taken or information they have gained from secondary sources - The children recognise 'biggest and smallest', 'best and worst' etc. from their dat

PLANTS
-Identify and name a
variety of common wild and garden plants, including deciduous and evergreen trees. -dentify and describe the of common flo of a variety plants, including trees.

PLANTS - Observe and describe how se

- Find out and describe how plants need water, light and a suitable temperature to grow and stay healthy. EIVING THINGS AND THEIR HABITATS - Explore and compare the differences
between things that are living, dead, and between things that are living, dea
things that have never been alive things that have never been alive
- Identify that most living things live in - Identify that most living things live in
habitats to which they are suited and describe how different habitats provide for the basic needs of different kinds of animals and plants, and how they depend on each other
- Identify and name a variety of plants and animals in their habitats, including micro-- Describ
- Describe how animals obtain their food from plants and other animals, using the
idea of a simple food chain, and identify and name different sources of food

Using straightforward scientific evidence to answer questions or to support their findings.
 they have made, measurements they have taken or information they have ganed from secondary sources. The answers are consistent with the evidence, Identifying differences, similarities or changes related to simple scientific ideas and processes
Children interpret their data to generate simple comparative statements based on their evidence. They begin to identify naturally occurring patterns
and causal relationships. Using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions

- They draw conclusions based on their evidence and current subject knowledge.

Using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions
They identify ways in which they adapted their method as they progressed or how they would do it differently if they repeated the enquiry. Using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions

- Children use their evidence to suggest values for different items tested using the same method e.g. the distance travelled by a car on an additional surface. • Following a scientific experience, the children ask further questions
which can be answered by extending the same enquiry.

Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions
. They communicate their findings to an audience both orally and in writing, using appropriate scientific vocabulary.

PLANTS

* Identify and describe the functions of different parts of flowering plants: roots; stem/trunk; leaves; and flowers
life and growth (air, light, water, nutrients from soil, and room to grow) and how they vary from plant to plant *Investigate the way in which water is transported within plants.
* Explore the part that flowers play in the life cycle of flowering plants, including dispersal.

LIVING THIN

HABITATS
Recognise that living things ways. ways.
keys to help group, identify and name a variety of living things in their local and wider environment.
Recognise that environments an change and that this can
sometimes pose dangers to living things.

Identifying scientific evidence that has been used to support or refute ideas or arguments
Children answer their own and others' questions based on observations they have made, measurements they have taken or information they have gained from from from other groups, secondary sources and their scientific understanding, supports or refutes their answer.
They talk about how their scientific ideas change due to new evidence that they have gathered.
Teporting and presen new discoveries change scientific understanding. causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations
In their conclusions, children. identify causal relationships and patterns in the natural world from their evidence; identify results that do not fit the overall pattern; and explain their findings using their subject knowledge.

Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in causal and written forms such as displays and other presentations - They evaluate, for example, the choice of method used, the control of variables, the precision and accuracy of measurements and the credibility of
secondary sources used.
. They identify any limitations that reduce the trust they have in their data. Using test results to make predictions to set up further comparative and fair tests
Child
the scientific knowledge gained from enquiry work to make predictions they can investigate using comparative and fair tests

Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations - They communicate their findings to an audience using relevant scientific language and illustrations.

LVN Cribe the differences in tial

- Describe the differences in the life insect and a bird
Describe the life process of
reproduction in some plants and

Describe how living things are Describe how living things are to common observable characteristics and based on similarities and differences, including microorganisms, plants and animals. - Give reasons for classifying plants and animals based on specific characteristics.

ANIMALS INCLUDING HUMANS of the basic parts of the
digestive system in humans.
Identify the different types of teeth in humans and their simple functions.
Construct and interpret a
dentifying producers, predators and prey.

STATES OF MATTER

Compare and group materials they are solids, liquids or gases. Observe that some materials change state when they are heated or cooled, and measure or research the temperature a which this happens in degrees Celsius (${ }^{\circ} \mathrm{C}$).
Identify the part played by the water cycle and associate the rate of evaporation with emperature.

起

Identify how sounds are made, associating some of them with something vibrating. Recognise that vibrations from to the ear.
Find patterns between the pitch of a sound and features of the object that produced it. - Find patterns between the volume of a sound and the strength of the
produced it.

- Recognise that sounds get fainter as the distance from th sound source increases.

NIMALS INCLUDING HUMANS - Describe the changes as humans develop to old age.

NIMALS INCLUDING HUMANS - Identify and name the main parts of the human circulatory system, and describe the functions of the heart, blood vessels and blood.
Recognise the impact of diet, exercise, drugs and lifestyle on the way their bodies function.
Descibe the ways in which nutrients animals, including humans.

PROPERTIES AND CHANGES OF MATERIALS
Compare and group together everyday materials on the basis of their properties, including their hardness
solubility, transparency, conductivity (electrical and thermal), and response to magnets.
Know that some materials will dissolve in liquid to form a solution substance from a solution.

- Use knowledge of solids, liquids and gases to decide how mixtures might be separated, including through filtering, sieving and evaporating.
- Give reasons, based on evidence from comparative and fair tests, for the including metals, wood and plastic. - Demonstrate that dissolving, mixing and changes of state are reversible changes.
Explain that some changes result in the formation of new materials, and reversible, including changes associated with burning and the action of acid on bicarbonate of soda. EARTH AND SPACE
- Describe the movement of the Earth, and other planets, relative to the Sun in the solar system
- Describe the movement of the Moon relative to the Earth.
approximately spherical bodie
- Use the idea of the Earth's rotation to explain day and night and the apparen movement of the Sun across the sky

EVOLUTION AND INHERITANCE Recognise that living things have provide information about living thing hat inhabited the Earth millions of years ago.

- Recognise that living things produce offspring of the same kind, but normally offspring vary and are no identical to their parents
dapted to suit their environment in different ways and that adaptation may lead to evolution.

Reco
 in stragise that light appears to trave

Use the idea that light travels in are seen because they give out or reflect light into the eye.

- Explain that we see things because light travels from light sources to our eyes or from light sources to objects and then to our eyes.
Use the idea that light travels in straight lines to explain why shadows same shape as the objects that cast them.

			FORCES AND MAGNETS - Compare how things move on different surfaces. Notice that some forces need contact between two objects, but magnetic forces can act at a distance. - Observe how magnets attract or repel each other and attract some materials and not others. Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet and identify some magnetic materials. some magnetic materials. Describe magnets as having two poles. Predict whether two magnets will attract or repel each other, depending on which poles are facing.

ELECTRICITY

- Identify common appliances Construn electricity.
electrical circuit, identifying naming its basic parts, including cells, wires, bulbs, switches and buzzers.
- Identify whether or not a lamp will light in a simple series circuit, based on whether or not the lamp is part of a complete loop with a battery.
- Recognise that a switch opens and closes a circuit and not a lamp lights in a simple series circuit.
Recognise some common conductors and insulators, and associate metals with being good conductors.
unsupported objects fall towards the Earth because of the force the falling object.
- Identify the effects of air resistanc der resistance and friction thance, between moving surfaces.
- Recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater effect.

ELECTRICITY

Associate the brightness of a lamp or the volume of a buzzer with the circuit.
Compare and give reasons for
variations in how components function including the brightness of bulbs, the position of switches. - Use recognised symbols when representing a simple circuit in a diagram

